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and water (14:1:3, v/v/v) for 24 hr at room temperature. The 
unprotected hexadecanucleotide showed a trace of faster traveling 
impurity in solvent E (R1 values are shown in Table I). The spectral 
properties of d-T(pTpApCpT)3pTpApC were Xmal 263 mn, XmiI1 
234 m/x, and e28o/e26o = 0.60 in water. 

Removal of Monomethoxytrityl Group from d-MMTr-TpTpApC 
Using Acetic Acid-Pyridine Buffer. Ammonium d-MMTr-
TpTpApC (70 OD26O units) was dissolved in 0.5 ml of a mixture of 
acetic acid, pyridine, and water (14:1:3). Aliquots (0.05 ml) were 
taken at different time intervals and evaporated with pyridine. 
The residue was analyzed by paper chromatography in solvent A. 

Allosteric Linkage 

Previous discussions of l i nkage 1 - 3 have been pitched 
on the most general note, without heed for mecha­

nism. Now, in view of mounting interest in allosteric 
transitions as a possible source of regulation in enzymes, 
and indeed in working proteins generally, the time would 
seem ripe for a more detailed analysis, directed specifi­
cally at those linkage effects, commonly known as allo­
steric effects, which arise from the prevalence of equi­
librium between different conformational forms in a 
macromolecule. The task is greatly lightened by the 
introduction of an expression for the binding potential 

(1) J. Wyman, Advan. Protein Chem., 4, 407 (1948). 
(2) J. Wyman, ibid., 19, 223 (1964). 
(3) J. Wyman, J. MoI. Biol., 11, 631 (1965). 

Half-life of the compound was found to be 5 hr at room temperature 
After 24 hr d-TpTpApC was practically the only nucleotidic com­
pound detected in solvent A. The spot was eluted, treated 
with concentrated ammonia at 37° for 12 hr, and chromatographed 
in solvent E. Again a single spot was observed. When the above 
acetic acid-pyridine treatment was prolonged to 5 days, again only a 
single product corresponding to d-TpTpApC (solvents A and E) 
was observed, and no evidence of depurination was obtained. 
After 10 days at room temperature, the formation of new minor 
ultraviolet-absorbing products corresponding, presumably, to the 
removal of adenine was observed (solvents A and E). 

of the macromolecule, which we shall call the allosteric 
binding potential. It is with this that we begin; we 
end, as usual, with a discussion of hemoglobin, which 
provides an incomparable test body for all such ideas. 

1. The Allosteric Binding Potential 

In order to introduce the concept of the allosteric 
binding potential a few words about the binding poten­
tial in general are called for by way of orientation. 
The binding potential is a thermodynamic concept 
which applies to any system but is particularly relevant 
to a macromolecule containing a number of interacting 
sites for several different ligands.8 It is closely related 
to the grand canonical partition function of statistical 
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Abstract: For any system there exists a binding potential, JI, which is a function of the chemical potentials, /J., of all 
the components present save one, the reference component. This has the property that dJI/d/U; = nt, where nt is the 
amount of component i per unit of reference component. In the case of a macromolecule which exists in several 
allosteric conformations all in equilibrium with one another, JI assumes the special form given by eq 1.5 or 1.6, 
becoming what we call the allosteric binding potential. This considerably simplifies the discussion of the macro­
molecule and predicts various key features of its behavior in its reactions with ligands. It leads at once to the con­
cept of allosteric linkage, a type of linkage which arises exclusively from the prevalence of equilibrium between the 
various conformations, independently of whether these, by themselves, show any linkage effects at all. Allosteric 
linkage, when heterotropic, may be either positive or negative; when homotropic, it is always positive (or coopera­
tive). In the case where the macromolecule contains only a single site for a ligand X, equilibrium between the 
various conformations has the result that the ligand equilibrium curve for X necessarily assumes the form of a simple 
titration curve. When the number of sites is greater than one, the situation is of course more complex. In such 
cases, however, the median ligand activity of the macromolecule as a whole, which gives the total work of saturat­
ing it with ligand, may be expressed very simply in terms of the median ligand activities of the various forms by 
eq 4.3 or 4.4 The introduction of the allosteric binding potential clarifies the whole concept of homotropic 
linkage in an allosteric macromolecule and leads to a sharper distinction between the true and apparent inter­
action free energy. It likewise clarifies the concept of heterotropic linkage and the regulation to which it can give rise. 
In particular, it shows that the potential fineness of allosteric control of an enzyme by its activators and inhibitors 
increases with the number of sites for them in the macromolecule (eq 6.4; see also section 10c). Moreover it 
brings out the fact that whenever the interactions are allosteric in origin the shape of the ligand equilibrium curve 
for a given ligand cannot be invariant for changes of the ligand activity of the control ligands, nor, in general, will 
the curve be symmetrical. (An exception is of course the one- or two-site case.) Finally, the introduction of the 
binding potential leads to an expression for the heat of combination of the macromolecule with a ligand, which 
shows how this quantity depends on the heats of the various allosteric transitions (eq 9.3). An analysis of the 
ligand equilibria of hemoglobin in the light of these principles shows that they are not inconsistent with the idea that 
the various interactions displayed, both the heterotropic and homotropic ones, are predominantly allosteric in origin. 
This leads, almost perforce, to the conclusion that the major part of the interactions arises within the a/3 subunits. 
The interactions between these subunits, whether in the same or different molecules, though of decisive importance 
in producing the observed values of the Hill interaction parameter, n, are much smaller. 
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mechanics, although, being a wholly macroscopic con­
cept, it is more general. Let P be any one of the various 
thermodynamic potentials and let its first partial deriva­
tives with respect to the composition variables, for 
constant values of the physical variables, be denoted 
by M- Then it can be shown that there exists a cor­
responding potential, JI, which is a function of all the 
/Li except one, namely that corresponding to which­
ever component is chosen as reference component, and 
which has the property that 

dJI 
rii = — 

d/"•* 

where nt is the amount of component i in the system per 
unit of reference component. This potential, JI, 
we call the binding potential, designating it by the 
Russian character corresponding to Roman L. Each 
K4 given in this way may be regarded as the amount 
of component / "bound" by the reference component. 
We enclose the word "bound" by quotation marks, 
because of the very general sense in which it is used, 
for it is not restricted to material which enters into 
chemical combination with the reference component 
but includes as well all other forms which may be pres­
ent. However, when the amount of nonchemically 
bound material may be neglected, or allowed for, as is 
often the case when the reference component is a macro-
molecule possessing many ligand binding sites, then 
the word may with good approximation be taken in its 
more familiar and literal sense. It is under these con­
ditions that the relationship between the binding poten­
tial and the grand partition function is clearest. If, in 
particular, P is identified with the Gibbs free energy, 
then of course the ,u4's become the same as the ordi­
nary chemical potentials, and each nu except for a con­
stant depending on the choice of the standard state, 
may be replaced by RT In x, where x is the correspond­
ing activity. By resorting to second derivatives we 
arrive at once at a variety of useful linkage relations 
which describe the interrelations of function in the 
macromolecule, and the introduction of the binding 
potential leads to the concept of functional maps 
which clarify the notions of linkage groups, linked 
functions, and linked sites. With this brief introduc­
tion we now proceed to the formulation of an expres­
sion for the binding potential of an allosteric macro­
molecule, or, as we may say, for the allosteric binding 
potential. 

Suppose that a macromolecule M exists in a number 
of discrete conformational forms 1, 2, , . ., r, all in 
equilibrium with one another. The problem is to 
derive an expression for the total binding potential, 
JI, of the macromolecule in terms of the individual 
binding potentials, JI4, of the various forms. Let us 
arbitrarily choose one form, say 1, as a reference form 
and denote by L4 ' the ratio of any other form i to this 
form. This means that L4 ' is the equilibrium constant 
for the transition from form 1 to form * and of course 
implies that L1' = 1. Further, let us denote by X 
the total amount of any ligand X bound per mole 
of macromolecule, and by p.x and x the chemical poten­
tial and activity of X, respectively. Finally, let V1' 
be the fraction of the molecules present in form /', i.e. 

K4' = L4 ' /2L4 ' (1.1) 

Then3 

T - d J I - d J I _ V „ - ? _ 
OfXx RTo In x i = i 

YXWX1IY1W) (1.2) 
t - 1 t = l 

But 

Moreover 

W = I4e(Jl< - fli)/*r (1.4) 

where L4 is a constant which gives the value of L4 ' 
when (JI4 - JIi) = 0. It follows that 

JI = RT In YLte^lRT (1.5) 
« = i 

as may be verified by differentiation. 
By writing the expression in this way, we avoid 

giving arbitrary priority to any one of the forms. 
It is to be noted, however, that one of the L's must 
always be equal to 1, namely that corresponding to 
whichever form is chosen as the reference form. 

Since addition of a constant to JI makes no difference, 
the summation in eq 1.5 may be divided by 2L4, with 
the result 

JI = RTIn JTv^iIRT ( 1 6) 
i = \ 

Here, it should be especially emphasized that the 
v's are constants which give the values of the v"s when 
each L4 ' = L4; they may be interpreted as mole frac­
tions and as such are subject to the condition "Zv1 = 
I.4 

Equations 1.5 and 1.6 may be compared with the 
corresponding expressions for the binding potential 
when there is no equilibrium between the forms; these 
are simply 

"-S(S-"-) (L7) 

and 

JI = Y.vjlt (1.8) 
; = i 

2. Allosteric Linkage 

Let us fix our attention on two ligands X and Y. 
Suppose that each JI4 is the sum of two terms, JI41 and 
JI(„, one a function of x and the other a function of 
y. This means that there is no direct linkage between 
X and Y in any one form or in the whole system in the 
absence of equilibrium between the forms. When, 
however, there is equilibrium between the forms, then 
unless either JI4x or JI41, is the same for all the forms, 
it will be impossible to separate JI in eq 1.5 or 1.6 into 

(4) It should be noted that the possibility of expressing the allosteric 
binding potential in this simple way results from the fact that the allo­
steric transitions involve no change of molecular weight, i.e., no associa­
tion or dissociation. In a dissociating system the situation is much 
more complex, owing to the fact that the ratios of the forms are no 
longer directly identifiable with equilibrium constants. For example, if 
any one of the forms is a r-mer of form 1, then it will not be possible in 
general to write an explicit analytical expression for the binding poten­
tial, since this would involve the solution of a rth degree equation. 
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the sum of two potentials, one a function of x and the 
other a function of y, and there will be a linkage of the 
two ligands mediated by the conformational equilibria. 
Such linkage we call allosteric linkage. 

The situation may perhaps be clearer if we express 
each JI1 in terms of a polynomial Nxv in x and y, 
as is always possible with better or poorer approxi­
mation. 

ZIi = RT In Nxy (2.1) 

In general, if the number of X binding sites is t and the 
number of Y binding sites s, Nxv will be of the form 

i = 0 J=O 

where the K's are constants, AT00 being equal to 1. 
When there is no direct linkage between X and Y, then 
Nxy will be factorable into the product of two poly­
nomials, one in x and one in y. 

Nxy = NxNy = (1 + K1X + . . . + Ktx
l)(\ + 

Miy+ ... + Msy
s) (2.2) 

Equation 1.5 then becomes 

JI = RTIn 2LtNixNiv (2.3) 

andeq 1.6 becomes 

JI = RT In XViNtxNiv (2.4) 

If and only if either Nx or Ny is the same for all values 
of i will JI degenerate into the sum of two terms, one a 
function of x and one a function of y. This is illustrated 
by the case where there are only two forms and where the 
polynomials are both of first degree. Then 

JI = RTIn [Vx(I + K1X) (1 + M,y) + 
v2 (1 + K2X)(I + M2J)] = RTIn[I + (V1K1 + V2K2)X + 

(V1M1 + v2M2)y + (ViK1Mi + V2K2M2)Xy] 

The condition of factorability is 

(V1K1 + V2K2)(ViM1 + V2M2) — ViK1M1 -\- V2K2M2 

which, introducing V1 + v2 = 1, yields 

M1(K2 - Ki) = M2(K2 - Ki) 

It is evident that factorability requires either 

Mi = M2 or ATi = K2 

This condition is both necessary and sufficient, and, ex­
cept in this degenerate case, the allosteric equilibrium 
must give rise to heterotropic interactions. These 
may be either positive or negative, depending on 
whether K2IK1 and M2)Mi are both either greater or less 
than 1 or whether one is greater than 1 and the other 
less.5 

Apart from degenerate cases, allosteric equilibrium 
also leads inevitably to homotropic interactions. 
Suppose the activity of ligand Y is held constant and 
that in each of the r conformations the t X binding 
sites are all independent. Then eq 2.4 becomes 

JI = .Rr In 2 > ( 1 + Ui1X)(I + ki2x).. .(1 + kux) 
» = i 

(2.5) 

(5) As in previous discussions the term heterotropic is used here for 
interactions between sites which bind different ligands; homotropic is 
used for interactions between sites which bind the same ligand. 

Although the individual polynomials are completely 
factorable, their summation is not, and therefore the 
system must display stabilizing homotropic interactions 
which arise from the conformational equilibria;3 

however, the degree of the polynomial remains equal 
to t, and therefore the maximum value of the Hill 
parameter, n, cannot exceed t, as of course we know 
from more general considerations.6 

As an example to show that the summation cannot 
be completely factored, consider the simple case 
recently discussed by Monod, Wyman, and Changeux7 

where there are only two forms and where all the k's 
for each form are the same. Then the summation in 
eq 2.5 becomes 

V1(I + klX)1 + v2(l + k2x)1 

which gives 

1 + KvIk1 + v2k2)x + t(t ~ 1 W x 2 + V2W)x* + ... 

In order that the polynomial be completely factorable, 
it is necessary that the ratio of each coefficient to the 
preceding one be equal to or less than its statistical 
value,8 e.g., (^k1 + v2k2)

2 > V1W + v2k2
2. But, 

(6) This parameter is by definition the slope at any point of a Hill plot 
in which In (xj{\ — S)) is represented as a function of In x (or nx), x 
being the fractional saturation of the macromolecule with ligand X. It 
is useful as an index of the interaction energy which is realized in 
saturating the macromolecule with ligand (see section 5). 

(7) J. Monod, J. Wyman, and J. P. Changeux, / . MoI. Biol., 12, 88 
(1965). 

(8) This principle, being so nearly self-evident, was given without ac­
companying proof (ref 3, footnote to p 640). It is so fundamental, 
however, to the whole discussion of linkage that we take this occasion to 
present one. Consider the expression (1 + kx)'. When expanded 
this gives rise to a polynomial in which, by definition, the coefficients K 
have their statistical values (Ki - fc*r!/i!(( — i)!). Now modify one of 
the factors 1 + kx to 1 + ukx, where u may be either greater or less 
than 1. The resulting polynomial may be written in the form 

1 + (1 + rfitkx + . . . + JTf-Tf), (1 + in)k<x< + 

where ?j = (u — I)It. Now, when the coefficients have their statistical 
values 

Kj+1 t - 1 = 

Ki(K1It)I+ 1 

In the present case this ratio is [1 + (i + l)nV[(l + i))(l + in)]. The 
difference between the denominator and numerator will be found to be 
iV, which is greater than 0. Consequently the ratio in question is less 
than 1. With the aid of the principle of mathematical induction the 
argument may be extended to the case where all the factors are made dif­
ferent. 

We also take the occasion to make clear that by stabilizing (or posi­
tive, or cooperative) interactions we mean interactions which have the 
effect of decreasing the work required to saturate the macromolecule 
with ligand. If the sites are independent of one another, this work has a 
certain value, and, as we have just proved, the coefficients of the polyno­
mial for the binding potential satisfy a certain inequality. Destabilizing 
(or negative, or anticooperative) interactions, since they act wholly to 
increase this work, must strengthen this inequality for every value of !. 
Consequently, if the inequality is violated for any value of !, at least 
some of the sites must be subject to stabilizing interactions. On the other 
hand, some stabilizing interactions, provided they are small enough in 
relation to other effects, can be present without showing up in this way. 
Thus violation of the inequality is a sufficient, but not a necessary, condi­
tion to establish the existence of stabilizing interactions. Commonly 
stabilizing interactions show up in values of the Hill parameter, n, 
which are greater than 1; nevertheless, though stabilizing interactions 
always lead to an increase of « above the value which it would otherwise 
have, they do not necessarily raise it above unity. All this will become 
clearer as the discussion proceeds. 

There is a further point. As we have seen, the allosteric binding 
potential is always expressible in terms of a polynomial of the same 
degree as the polynomials for the various conformational forms. This 
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taking account of the fact that Vi + v2 = 1, it is easy 
to show that this requires (ki — Zc2)

2 ^ 0, a condition 
which will only be fulfilled in the degenerate case where 
k\ = ki, i.e., where the two conformations are indis­
tinguishable in respect to the binding of X. 

It should be realized that when the r polynomials 
Nxy have certain factors in common, these may be re­
moved and then appear as an additional term (or terms) 
in the expression for the binding potential in accordance 
with eq 1.5 or 1.6. Moreover, it is superfluous to 
assume that the individual binding potentials are them­
selves factorable. If they are not, then of course the 
system is subject to linkage effects in addition to those 
arising from the allosteric equilibria.9 

3. A Unique Case 

As a special case consider a system which contains 
only one X binding site in each of r conformations (or 
allosteric forms). Then 

JI = ,RTIn X>*(1 + KiX)Niy = RT \n 5><tyj- + 
t - i t - i 

V1KiN iyx) (3.1) 

For any value of y the polynomials Niy are constants. 
Consequently, if we are considering only the binding 
of X, we may write eq 3.1 as 

* = - •„ ( , + » ) <32> 
This is identical with the binding potential of a single 
site molecule which exists in only one conformation, 
except that the single constant K is replaced by 

X 

R-. 
'LviNiyKi 

?ViNiy 
(3.3) 

K may be regarded as a weight average of the 7C,'s, 
the weighting factors being vtNiy. In this particularly 
simple case the Hill parameter, n, acquires the value 
of exactly 1 as a result of the allosteric equilibria. 

It is interesting to compare the ligand equilibrium 
curves for the system in the presence and in the absence 
of the allosteric equilibria. Figure 1 represents the 
case where there are only two allosteric forms, of rather 
widely different affinities for X. Curve a (equilibrium 
present) corresponds to eq 3.2, curve b (equilibrium 
absent) to eq 1.7 or 1.8. The introduction of equi­
librium gives rise to a complete changeover from a two-
step curve to a single-step curve with the Hill parameter, 
n = 1. As will be seen below, this simple "all or 

results from the prevalence of the allosteric equilibria. It is worth 
noting that, when the equilibria are suppressed, it is no longer possible 
to formulate the binding potential in this way. This follows at once 
from eq 1,8, which leads to the result 

JI = RTIn I R l + KilX + ... + Kitx')v< 
i 

The vis are of course, as mole fractions, all less than unity. Similarly it 
is clear that, when a macromolecule dissociates, the binding potential 
cannot be expressed in terms of a polynomial of any degree, since the 
ViH then involve the solution of quadratic or higher degree equations. 
See footnote 4. 

(9) Throughout this discussion we have assumed a discrete number of 
conformations, corresponding to a finite value of r. By increasing r 
indefinitely it would seem that it should be possible, formally at least, 
to extend the principle of allosteric linkage to embrace the case where 
there is a continuous transformation of the conformation of the macro-
molecule as the ligand activity increases. 

Figure 1. Ligand equilibrium curve of a molecule which contains 
a single site for a ligand X and which exists in two conformational 
forms: curve a, with conformational equilibrium; curve b, with­
out conformational equilibrium (see text). 

nothing" behavior stands in contrast to the more com­
plex behavior of a system containing several X binding 
sites. 

Equation 3.3 shows the way in which R varies with 
j \ Since when y = 0 each Niy = 1, R0 (the value of 
K when y = 0) is given by 

£o = I1ViKi 

Consequently eq 3.3 may also be written as 

R = R, 
(HPiNiyXUvtKt) 

(3.4) 

This may be compared with the expression for K in 
the simple one-site, one-conformation case when there 
is direct interaction between X and Y. Here the binding 
potential is 

which gives 

JI = RT In (JV/ + NyK0X) 

K = K0NJN/ (3.5) 

When the various Y binding sites are independent, 
this becomes 

K= K0 
(1 + nny)(l + nny). . . 

(1 + mx'y){\ JmWy)... 
(3.6) 

In contrast, the right-hand member of eq 3.4 will not 
in general be factorable in this way. 

4. The Median Ligand Activity 

In dealing with ligand binding by a macromolecule, 
it is often convenient to introduce the concept of the 
median ligand activity.2 This is defined as that value 
xm of the ligand activity x such that 

J *Xm _ /»03 

Xd In x = (t - X ) d l n x (4.1) 
X=O J Xm 

where t is the number of X binding sites. It is a direct 
measure of the total work, AF, done in saturating the 
macromolecule with ligand. 

AF = tRT In x„ (4.2) 

The median ligand activity can be given a very 
simple formulation with the aid of the binding poten-
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tial. In terms of the binding potential eq 4.1 becomes 

"*™ dJI 
f,-o d In x" RTJx, 

-d In x = r In x 

SJI 
d In x d In x 

whence 

t In x .I1 
•=o 

If we express JI in terms of a polynomial10 

JI = RT\n(1 + #1* + • . . + K,x') 

this gives 

t\nx In(H-ZsT1X+ . . . +K1X?) 

which may be written as 

— In xj = 0 + Hm In 
1+K1X + + Ktx<\ = 

InK, (4.3) 

Consequently 

(£)=«• (4.4) 

from which it follows that at the median point of the 
equilibrium curve the concentrations of the completely 
liganded and completely unliganded forms of a macro-
molecule are the same. 

In the case of an allosteric system, where 

JI = RT In (V1N1 + V2N2+ ... + vTNT) 

eq 4.4 becomes 

1 \ ( 

(4.5) 

= V1K1, + V2K2, + . .. + V1Kn = 

V1I ) + V2I + ... + V, \xmJ (4.6) 

In words, the reciprocal of xm' is the average of the 
reciprocals of the several xm* values. 

In the event that one of the forms contains a smaller 
number of X binding sites than the others, the cor-

(10) Although there are good grounds, on the basis of the mass law, 
for doing this, the procedure might seem to limit the generality of the 
results which follow. Actually all that is assumed in the argument given 
here is that when x (and M) -*• ra. the amount of X bound by the macro-
molecule approaches t, the number of sites, and that when x -*• 0, the 
amount bound goes to zero. Then, for large values of x 

1 dJI 
RTi) In x -* t {x -* =°) 

whence 

JI = RTIn x1 + constant = .Rr In K,x' 

On the other hand, for small values of x 

1 &JI 
RTb In x 

= 0 

whence 

JI = constant 

Since the value of the constant makes no difference, it may be set 
equal to zero, which corresponds to a value of 1 for the constant term 
of the polynominal. This procedure produces 4.3. 

responding value of K, is zero (the corresponding 
xm = co) and that form contributes nothing to the 
value of xm for the system as a whole except through 
the values of the v for the other forms. 

Equation 4.6 enables us to explore the effect of the 
interactions resulting from the allosteric equilibria on 
the work required to saturate the macromolecule with 
ligand X. Since, as we have seen, these interactions 
are always of a stabilizing kind, it is clear, in a general 
way, that they must act to decrease this work, but it 
is worthwhile to analyze the situation in detail. Con­
sider first the case where there are only two allosteric 
forms, 1 and 2, each of which contains t X binding sites. 
Then 

J Vj^ V^ 
v t ~ ^. t + v I 

Xm1 Xm2 

The total work of saturating the macromolecule is 
therefore 

AF = RT In xj = -RTIn (-1^1 + —A (4.7) 

In the absence of the allosteric transition the work 
would be, by eq 1.7 and 1.8 

AF* = RTv1 In xml ' + RTv2 In xm2' (4.8) 

The difference between the two may be written as 

AF* - AF = 

RTIn 

If we make use of the relation 

Xml ' Xm2 '[ t + 
^mI "m2 / _ 

(4.9) 

V1 + V2 — 1 

the expression in brackets becomes 

Xm/V 
1 

Xm2 \X mx / 

Consequently, introducing 

Z ^ Xm1IXm2 

AF* - AF = 

.RFIn 
1 + V2(Z

1 - 1)" 
= ,RFIn A (4.10) 

In the two limiting cases where v2 = 0 or v2 = 1,X= 1 
for all values of z; also, in the special case where z = 
1,X= 1 for all values of v%. In all these events AF* — 
AF = 0. Otherwise X is always greater than 1 and 
therefore AF* — AF > 0. This is apparent from a 
graph of the numerator and denominator of the ex­
pression for X plotted against zl. Clearly we need 
consider only values of z =• 1, since the case of z < 1 
becomes the same as that of z > 1 when the roles of 
the two conformations are interchanged. Figure 2 
shows such a graph. Curve a, a straight line of slope 
V2, is for the numerator, curve b, uniformly concave 
downward and of slope v2 at zl = 1, is for the denomi­
nator. Except in the limiting cases, v2 = 0 and v2 = 1, 
curve a always lies above curve b. 

We emphasize that AF* - AF = RT In X gives the 
decrease in the work required to saturate the macro­
molecule with ligand which results from the allosteric 
transition between the two conformations. Since X is 
always greater than 1, this is always positive. 
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Although the proof just given is based on a value of 
r = 2, the principle may readily be extended to any value 
of r. To do so we have only to treat (r — 1) of the 
conformations formally as a single conformation char­
acterized by a median ligand activity given by 

P 

1 

mfr-D/, 
Oi + . . . + iv_i) 

and repeat the reasoning just employed, making use 
of the principle of mathematical induction. 

When there is another ligand Y for which there are s 
sites, the polynomial in the expression for the binding 
potential, whether for the macromolecule as a whole 
or for each conformation, is of the form 

ttKijxY 

where K00 = 1 . In this case, in order to obtain the 
median ligand activity xm or ym, we resort to a proce­
dure which we may call normalizing the polynomial. 
This consists in reducing the leading term to unity when 
either x or y is treated as the sole variable; it reduces 
the polynomial to the standard form for determining 
the corresponding median activity. Thus if x is taken 
as the variable we divide the polynomial by the sum of 
all the terms which are of zero degree in x, thereby 
normalizing it in x; if y is taken as the variable, we 
divide by the sum of all the terms which are of zero 
degree in y, thereby normalizing it in y. Normaliza­
tion in x yields 

1 _ K10 + Kgy + . .. + Klsf a u u 

xj Km + Koiy + ... + K0sy
s V-11-1* 

Normalization in y yields 

1 K0, + Klsx + ... + Ktsx' 
Koo + KioX + . . . + KtoX 

(4.11.2) 

These two equations show how the work of saturating 
the macromolecule with either ligand varies with the 
activity of the other. When they are written in logarith­
mic form and differentiated, they yield the two familiar 
results 

d In xm 

d In y 

din ym 

din x 

ix-*o 

^y-Kl 

(4.12.1) 

(4.12.2) 

It is of interest to consider the two limiting values 
of xm corresponding to y = 0 and y -*• <= ; likewise 
those of ym corresponding to x = 0 and x -*• «=. Since 
AT0O = 1 it follows at once that these are 

(IT) -*» Gr«) = ? (4131) 

\ A m Zy = O \**m / y—*•» -"-Os 

(r<) -*- (r) -f* (4132) 

V m / * = 0 V m / j - > . A(O 
We verify that 

Gn) .(p) "(p) C-) (414> 
\Xm /y=0 V m Jx-• » V m / x-=^\Xm /y-*o> 

which means that it makes no difference, in saturating 
the macromolecules, in which order we introduce the 

a,b 

/ a 

J^^ a,b 

V1=I 

^ - b " ~ ^ ^ 

V,o 

(U) 
Figure 2. Graph of numerator (a) and denominator (b) of the ratio 
X in eq 4.10. 

ligands, as of course we know from general principles. 
The total work of doing so is 

AF = RTt In (Xm)̂ =O + RTs In (ym)x-+» = 

RTs In Cm)*=o + RTt In ( x j ^ . (4.15) 

It should be realized that eq 4.11, 4.13, 4.14, and 4.15 
apply equally well either to any one of the allosteric 
forms or to the system as a whole and are independent 
of whether or not the interactions are all of allosteric 
origin. It is of interest, however, to consider specifi­
cally the behavior of the system as a whole in the special 
case where the polynomial for each of the forms is 
factorable into a polynomial in x and a polynomial 
in y, the heterotopic interaction energies being ex­
clusively allosteric. Then 

N- = N- N-

where 

and 

Nix = 1 + Kax + ... + Kitx 

Nh = 1 + May + . .. + Misy
s 

In this case eq 4.11.1 becomes 

, Z) ViNiyKit 
i 1 = 1 

Z ViNiy 

(4.16) 

When y = 0 this yields 

(r) -£v(r) (4171) 

and, when y -+ » 

& ) , 
H-1--) (jr) 
'=1 \ymi/y=0\Xmt/y=o 

' = 1 V m J Z i = O 

(4.17.2) 

In both cases (l/xm0 is an average, but in one the 
weighting factors are simply the vt; in the other, 
vA.l/ymi')x-o-

Corresponding expressions hold for l/ym". 
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In x 

Figure 3. A hypothetical Hill plot. 

Equations 4.17.1 and 4.17.2 lead to the result 

Here the left-hand and middle members give, each 
equally well, the total work, AF, of saturating the macro-
molecule with both ligands, as formulated in eq 4.15; 
the right-hand member gives the average value of 

the weights being vu v2, • • •, V1. 
If there were no allosteric transitions, i.e., if the sys­

tem were frozen in its unliganded state, the mole frac­
tions of the various forms maintaining their initial 
values, then the work of saturating the macromolecule 
with both ligands would be 

AF* = BJT1Vt In (xmi% = 0 + 

RT^Vi In (W)x=O (4.19) 
i = i 

Let us suppose for the moment that there are only 
two conformations (r = T). Then 

AF* - AF = RT In vlXml'yml
s + 

RT In JVK1112W + RT In F - ^ - , + — r — i = 
L-*-ml J 'ml Xm2 ^m2 _ 

,RFIn (xmlwr(*m2Wr(-^r-;+—T—l) <4 • 2°) 
V*ml } ml Xm2ym2/ 

In this equation each xm refers to the value correspond­
ing to y = 0 and each ym to the value corresponding to 
x = 0. If we replace xml'yml

s by xml' and xm2ym2 

by XnJ, then this equation becomes the same as 
(4.9), and we may repeat the same argument used for 
the one-ligand case to show that in the two-ligand case 
also AF* — AF ^ 0; as before, we may extend the prin­
ciple to any value of r. 

Consequently we verify that the total work of satu­
rating the macromolecule with both ligands is always 
diminished as a result of the allosteric equilibria. But 
the values of xm or ym may either increase or decrease 
with increasing activity of the other ligand; i.e., the 
heterotropic interactions may be either positive or 
negative. Thus the work of saturating the macro­

molecule with either ligand alone, the activity of the 
other one being held constant, may be either increased 
or diminished as a result of the heterotropic interac­
tions. 

5. The Hill Plot and the Apparent Interaction Energy 

The Hill plot gives useful information about the 
homotropic reactions, of whatever origin, in any 
system.2 Here we consider specifically the behavior 
of the Hill plot in an allosteric system. 

The Hill plot is one in which 

In = In 

t — X 1 — x 

x = Xjt being the fractional saturation of the macro­
molecule with ligand, is shown as ordinate vs. 

In x = (MX - Hx0)IRT 

as abscissa. In the simple case where the macro­
molecule exists in only one conformation and contains 
only one site, such a plot of course gives a straight 
line of unit slope, the value of In x for which In xj 
(1 — x) = 0, i.e., x = 1J2, being — In K, where K is the 
equilibrium constant for the reaction. The total work 
of saturating the macromolecule is therefore 

AF = -RT In K = RT In xm = RT In x v , 

and there is no question of any interaction energy be­
tween sites, of whatever origin. 

If the macromolecule contains several sites, then, 
quite apart from any question of conformation, unless 
the sites are all alike and independent, the Hill plot 
will no longer be straight but will show one or more 
right-hand or left-hand deviations or kinks. How­
ever, unless the interactions between certain of the sites 
are infinite, it will approach an asymptote of unit slope 
at each end (see Figure 3). In the case where all the 
sites are identical, the perpendicular distance between 
the final and initial asymptotes, multiplied by RTVl, 
gives the average value of the free energy of interac­
tion of the sites, due to whatever cause, realized per 
site in saturating the macromolecule with ligand. 
When the final asymptote lies above the initial one this 
interaction energy is, as a matter of convention, taken 
to be positive; in the opposite case, as negative. 

In case the sites are not all identical but are independ­
ent, the Hill plot will show only right-hand displace­
ments, and the final asymptote will lie below the initial 
one, exactly as in the case of identical sites which inter­
act negatively. Thus the difference between the final 
and initial asymptotes, taken as positive when the final 
asymptote lies above the initial one, gives only a mini­
mum value for the total interaction energy between the 
sites realized in saturating the macromolecule with 
ligand. We shall call this the apparent interaction 
energy. 

Not only does the Hill plot, through its asymptotes, 
provide information about the minimum value of the 
total free energy of interaction realized in completely 
saturating the macromolecule with ligand, it also 
gives information about the point value of the free 
energy of interaction realized, per site, at any degree 
of saturation x in the system as a whole. If we denote 
the slope of the Hill plot at saturation x by n, then the 
minimum value of this quantity is given by 
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b / ''' 
a'/-'- / 

J / 
I / 
I / 

X>A 

In x 
Figure 4. A hypothetical Hill plot to show symmetry require­
ments; see ref 13. 

AF1 = RT 
x(l x)\ n) 

(5.1) 

Moreover, as follows from this relation, the minimum 
free energy of interaction, per site, for the whole system 
realized in passing from saturation X1 to saturation x2 

is simply RTV2 times the projection of the line joining 
points 1 and 2 on an axis normal to the asymptotes, i.e., 
one making an angle of 135° with the abscissa axis. It 
will be seen that unless the value of n > 1, i.e., unless the 
Hill plot bends to the left, then the minimum value of 
the free energy of interaction, i.e., the apparent inter­
action free energy, is negative. 

Figure 5 shows a Hill plot for the oxygen equilibrium 
of sheep hemoglobin. This curve, which is char­
acteristic of the ligand equilibrium of many proteins, 
shows only a single left-hand kink, and the distance 
between the estimated asymptotes corresponds to an 
apparent free energy of interaction of about 3000 
cal per site, although it will be seen that the exact 
position of the asymptotes is subject to a good deal of 
uncertainty. It should be emphasized, however, that 
this value is only an apparent one, and if hemoglobin 
is an allosteric protein, the true value must be greater 
than this, for, if the allosteric transitions were sup­
pressed, the distribution of conformations remaining 
the same as in the absence of ligand, the Hill plot would 
show one or more downward kinks and the final 
asymptote would lie below the initial one. It should 
never be forgotten that the apparent free energy of in­
teraction determined from a Hill plot can only be 
equated to the true free energy of interaction if we 
assume that, in the absence of interactions, the plot is 
a straight line of unit slope. 

Let us consider a little more closely what may be ex­
pected for the Hill plot of a macromolecule containing 
many sites and existing in several conformations. Of 
course, if the sites are all the same in all the conforma­
tions, then the curve will be a straight line irrespective 
of whether or not the conformations are in equi­
librium. On the other hand, as we have pointed out, 
if there is no equilibrium, the conformations remaining 
in fixed proportions, and if the sites are not all alike, 
the Hill plot will show one or more right-hand kinks, 
and the apparent interaction free energy will be nega­
tive, although actually of course there is no interaction. 

2 logp 

Figure 5. A Hill plot of the oxygen equilibrium of sheep hemo­
globin in 0.2 M phosphate buffer of pH 9.1 at 19°; based on data 
of F. J. W. Roughton, A. L. Otis, and R. L. J. Lyster, Proc. Roy. 
Soc. (London), B144, 29 (1955). 

The interesting cases are those in which there is allo­
steric equilibrium between the conformations. A 
unique one is that in which there is only one site in 
each conformation. Then, as we have seen (section 3), 
the ligand equilibrium is always that of a simple one-site 
molecule, and the Hill plot is a straight line of unit 
slope. The apparent interaction free energy will 
therefore be zero; the true free energy of interactions, 
however, is certainly greater. 

In order to deal with more complex cases we derive 
a general expression for the apparent interaction energy 
as determined from the asymptotes of a Hill plot. Let 
the binding potential be 

JI = RT In (1 + K1X + . . . + KiX') 

Then it follows from eq 1.1 that in the limiting case 
where x -*• 0, and x -*• 0 

1 - x 
Kix 

t 

which corresponds to a median ligand activity 

*^m 

On the other hand, when x • 

x 

K1 

o= and x • 

tKtx 
K1-! 

1 

1 - * 

which corresponds to a median ligand activity 

^m 
tK, 

(5.2.1) 

(5.2.2) 

(5.3.1) 

(5.3.2) 

These two limiting equations fix the positions of the 
asymptotes of the Hill plot and give for the apparent 
interaction energy per site the expression 

AF1 = RT In (xm)*_o - RT In (xm)*_*i = 

RTIn I , ; " ' )= RT In p (5.4) 

If the ratio p is greater than 1, then the final asymptote 
of the Hill plot lies above the initial one and the ap­
parent interaction energy is positive. 

Wyman / Allosteric Linkage 



2210 

Now the statistical values of A", and A",_x are3 

K1* ( * ) ' . n d * _ , . - , ( £ ) ' - ' (3.5) 

(By statistical values we mean here the values cor­
responding to a polynomial resulting from t independ­
ent and identical sites, i.e., those given by the expan­
sion of (1 + kx)'.) Consequently, if the ratio p is 
equal to 1, which means that the two asymptotes of the 
Hill plot coincide, then the ratio (K1IKt-,) has its sta­
tistical value, and conversely. 

Now consider the special case where there are r 
conformations, each of which contains t identical sites, 
characterized by a constant kt in conformation /. 
Then 

K1 = f£vkt = Kk) 
i = i 

Kt.-, = ii,Vik!-1 = Kk^) 
» = i 

K1 = jyw = (kl) 

(5.6) 

Here the bar stands for an average taken over all the 
conformations, each weighted according to its v. 

In terms of these average values 

(V) 

(W 1 ) 
(5.7) 

but it can be readily proved as a general statistical 
principle that this ratio is always greater than l . u 

Therefore in this significant case the Hill plot always 
gives a positive apparent energy of interaction, irre­
spective of the value of the various kt. 

It is interesting to compare the apparent free energy 
of interaction read from a Hill plot with the true value 
obtained by taking into account the final asymptote 

(11) A proof is as follows. Consider the three averages 

fa + fa + ... + fa, 
(*) 

(k'~l) 
fa'-1 + fa1' •. + fa,'"1 

+ fa,' 
(- =fa, + fa,+ 

In order to demonstrate that (k') > (Zc)(A'-1), we have only to show that 

(fa) - (MFI) = {^~±^ 

(fa + fa + ...)(fa'-' + fa'-1 + ...) > 0 

The middle member, after multiplication by M2,'gives 

fatfa'"1 - fa'"1) + Hk1'-
1 - Ar3'-

1) + .. . + 
fa.tfa,'-1 - fa'"1) + fa.Cfa.'-1 - fa'"1) + . . . = 

(fa - fa)!(fa'-2 + fa'"3 fa + . . . + fa'"2) + (fa - fa)W-2 + 
fa'"3 k3 + ... + fa'"2) + ... 

but this is certainly greater than zero. 
A familiar special case results from setting t = 2; the mean-square 

value of a quantity is always greater than the square of its mean value. 
The proof may readily be extended to show that 

( t W " ) > W ) . . . 

It follows from this that in the system under consideration (r conforma­
tions in equilibrium, each containing t identical sites) the ratio of each K 
to the preceding one in the polynomial in the expression for the binding 
potential is greater than its statistical value. 

which would be approached if no conformation changes 
were permitted. This final asymptote is determined 
by the limiting value of the ratio (x/l — x) approached 
as x -*• oo. This is easily shown to be 

Vl + Ol + 
ki kz 

(Ar1) 

where (A:-1) is the mean value of the reciprocals of the 
fc's. It corresponds to a median ligand activity 

(*«)*-*! = (F'1) 
Under these same conditions the initial asymptote and 
its corresponding median ligand activity are the same as 
before. 

Vk) 

The apparent value of AF1 in the absence of any con­
formational change is therefore 

AF1 = RT \n -J- - RT In ( F 1 ) = 
Kk) 

-/JFIn(AT)(F1) (5.8) 

Since (k)(k~l) is necessarily greater than unity, this is 
always negative. The true value of the free energy of 
interaction when the conformational changes are per­
mitted exceeds the apparent value read from a Hill 
plot by this amount. 

The considerations just presented apply to the case 
where the t sites in each of the r conformations are 
identical. When they are not, the situation becomes 
much more complex, and the apparent free energy of 
interaction no longer need to be positive. 

6. The Regulatory Action of Allosteric Transitions 

There is another way of looking at the situation. 
Consider an allosteric system in which there are only 
two conformations. Then by eq 1.1 

x = - - - - - * i + Y+TZ^ (6.1) 

Here L' is of course a function of the activities of all 
the components, including X, in accordance with eq 1.4. 
Let us fix our attention on ligand Y, which we may re­
gard as a regulator for the combination of X with the 
macromolecule—it may act either as an activator or an 
inhibitor. If the interactions stem exclusively from 
allosteric equilibria, then the saturations Xi and X2 

are independent of y. Consequently 

X1-
(i + iy 

J?2 + 

but by eq 1.4 

Consequently 

din Z/ 
c)ln y 

(1 + L') 

= (Y2 - Y1) 

XO 
din L' 
d In y 

V> In y/x 

L' 
(1 + L') 

-(X2- X1)(Y2- Y1) (6.2) 
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In terms of the fractional saturations x and y, i.e., 
saturations per X or Y binding site, this becomes 

(df}),= ( T T 7 T ( * 2 - *l} {% - yi)s (6 •3) 

In order to avoid any invidious distinction between 
the two forms, eq 6.3 may be written in terms of this 
mole fractions V and JV as 

Id-Tn^v Jx
 = Vi'V2'(*2 ~ ^(y* ~ y ^ s ^6 • 4^ 

We emphasize that in these equations, L', in distinc­
tion from L used in earlier sections, refers to the actual 
value of the equilibrium constant between the two 
forms at the prevailing values of x and y; likewise the 
v"s, in distinction from the v's employed earlier, refer 
to the actual values of the mole fractions represented 
by the two forms at the prevailing values of x and y. 

Equation 6.4 may be generalized to any number of 
forms with the result 

where the summation is to be extended over all pairs 
of values of i andj regardless of order. 

It will be seen that the left-hand side of eq 6.5 is a 
simple measure of the work required to be done 
through the regulator Y in order to produce a given 
change in the amount of ligand X (substrate) bound 
per site and thus, in the case of an enzyme system, to 
produce a given change in the activity of the enzyme. 
This work is given by RT(d In y/dx)x. It is significant 
that it is inversely proportional to the number 5 of Y 
binding sites per macromolecule (enzyme), and, if this 
is an oligomer made up of protomers each containing 
one site, to the number of protomers in the oligomer 
(to use the Monod terminology). A large molecule 
(large value of s) is thus more susceptible to regulation 
than a small one (for an example see section 10c). 

We may use the same procedure to explore the homo-
tropic interactions (self-regulation) of ligand X. Even 
if there were no direct dependence of Z 4 on x (as if, 
for example, we were considering values of x for which 
Xx was essentially 0 and Xi essentially i), then there would 
still be a dependence of Z on x due to the allosteric 
transition (see Figure 1). In the case where there are 
only two conformations, the contribution to (dZ/ 
b In x)y arising from the allosteric transition alone is 
given by 

d Z 
bhTx " * ' * ' < * ' " ^ ( 6 ' 6 ) 

whence 

It will be seen that this is always positive, i.e., homo-
tropic allosteric interactions are always of a stabilizing 
type, in distinction from the heterotropic ones which 
may be either positive (X? — Z i and P2 — Fi of same 
sign) or negative (Z2 — Zi and F2 — Fx of opposite 
sign). The argument may be readily generalized to 
the case where there are any number of conforma­
tions. Thus homotropic interactions always act to 

increase the value of the parameter n of the Hill plot 
and so to increase the apparent interaction free energy, 
whether this be positive or negative.12 

7. Variance and Invariance 

It is a consequence of eq 1.5 or 1.6 that, except for 
special cases, allosteric linkage between several ligands 
makes the shape of the equilibrium curve for each 
ligand dependent on the chemical potentials of all the 
other ligands. This becomes apparent when we recall 
that the curve is a plot of dJI/d^x vs. ixx. It is illustrated 
simply by the case where there are only two ligands 
X and Y. Write the binding potential as 

JI = RT In -Zv^" + &, 

Then clearly if and only if Jl,^ is the same for all forms, 
i.e., for all values of /, will dJI/d/ux be independent of 
Ai,. This condition means of course that there is no 
linkage between X and Y. But if JI,-, is not the same 
for all values of /, then not only will there be hetero­
tropic interactions between X and Y but also homo-
tropic interactions involving Y as well as X. These, 
as we have seen, are sure to be of a stabilizing type, 
i.e., cooperative. So, in any system in which there are 
heterotropic interactions between two ligands which 
are of allosteric origin, there must also be homotropic 
allosteric interactions for each ligand, which are neces­
sarily cooperative, and in general the equilibrium 
curves for each ligand will be dependent in shape on 
the chemical potential of the other ligand. The 
principle may be extended to any number of ligands. 

The only exception to this principle regarding the 
variance of shape of the ligand equilibrium curve 
is the special case where there is only a single site for 
one or more of the ligands. In this special case the 
equilibrium curve for that ligand will, as we have seen, 
always be the same as that for a single-site molecule 
existing in only one conformation, i.e., the Hill param­
eter n will be equal to 1; thus the curve will always be 
invariant. 

8. Symmetry 

A striking feature of certain ligand equilibrium curves 
{e.g., the oxygen equilibrium curve of hemoglobin) 
is their symmetry, or at least near-symmetry. The 
formal conditions of symmetry were developed else­
where some years ago for any system in which the bind­
ing potential (i.e., the ligand equilibrium) can be ex­
pressed in terms of a polynomial.1 If we write 

JI = RT In (1 + Ka + . . . + K1X
1) 

(12) Consider the special case of a macromolecule which contains t 
sites and exists in two conformations, 1 and 2, the affinities of the sites in 
conformation 2 for ligand X, though not necessarily the same, being all 
much greater than those of the sites in conformation 1. By eq 6.6 

= 5 In [g/(l - x)] = 1 S* fPiW , . _ . „ 

d In x S(I - S) d in x x(l - x) (X2 l> 

Also 

x = yi'Si + Vi 'Sz 
Owing to the large difference between the sites in the two conformations, 
there will be a wide range of values of x within which xi = 1 when 
xi — 0, and therefore x ^ vi', (1 — i) = (1 — vi') = vi'. As a 
result, anywhere within the range, n — t, which is its upper limit. If n 
(the value of vt' for x = 0) is sufficiently small, this value of n = ( will 
hold over substantially the whole of the equilibrium curve; however, at 
the two ends of the curve, where x — 0 and x— <=, n — 1. 
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then these conditions are 

Xi/, (8.1) 

where xi/2 is the value of x required to half-saturate the 
macromolecule. It should be emphasized that al­
though they are applicable in particular to an allosteric 
system, they are of much wider scope and are wholly 
independent of the nature of the binding or the mech­
anism which gives rise to the interactions, being sub­
ject only to the limitation regarding the form of the 
binding potential. As we have shown earlier in this 
paper, the median ligand activity xm is given by ;cm = 
l/Kt'

/t. Consequently, symmetry demands that xi/, = 
xm, which is obvious. Moreover, as follows very simply 
from eq 8.1, at the midpoint of the equilibrium curve 
(x = xi/„ x = 1J2) the concentrations of "conjugate" 
intermediates, i.e., MX1 and MXt-t, are always equal 
to one another, which is also more or less obvious. 
Further, it is easy to show that if we express the ligand 
activity as a ratio of x to xm, i.e., introduce w = 
x/xm, the conditions of symmetry require that the 
expression for the binding potential itself become 
symmetrical in its coefficients.13 

JI = RTIn . + K1
1Z1+ Kf'l + 

, K2W
1-' K1W

1-1 ; 
+ v+i/t + v.\/t + w 

Kti/l Kt1'' 
(8.2) 

In an allosteric system the conditions for symmetry 
will not in general be realized. Consider, for example, 
the case where the ligand equilibrium curve for each 
conformation is symmetrical, as when the corresponding 
polynomial is simply (1 + kxf. Suppose there are 
only two conformations. Then the polynomial in the 
expression for the total binding potential is 

1 + («»i&i + vjc&x + ...+ (PIk1'-
1 + vih'-1)^-1 + 

(nfci' + Pik2')x' 

Consequently the condition of symmetry given by the 
second of the equations becomes 

VIk1'-
1 + V1U'1 

V^k1 + "2^2 (8.3) 

This will not in general be satisfied, although it is always 
satisfied in the special cases when t = 1 or t = 2. We 
have already seen that when ^ = I the ligand equi­
librium curve is the same as a simple titration curve 
(n = 1). 

It should be made clear that the functional sym­
metry discussed here is not to be confused with the 
geometrical symmetry which has been proposed else­
where as a basis for allosteric transitions.7 Although 
attempts have been made to relate functional and struc­
tural symmetry,14 it is apparent from this discussion 

(13) Another way of looking at symmetry is in terms of the Hill plot 
(Figure 4). Symmetry of the ligand equilibrium curve demands sym­
metry of the corresponding Hill plot. Since the interaction energy 
involved in passing from saturation a to saturation b is proportional to 
the difference of ordinate between a and b, clearly the interaction energy 
realized in symmetrically located steps must be the same, i.e., that in­
volved in passing from io to 20% saturation, and must be the same as 
that involved in passing from 80 to 90 % saturation. 

(14) D. W. Allen, K. F. Guthe, and J. Wyman, J. Biol. Chem., 187, 
393 (1950). 

that there need be no connection between them. 
The system of constraints leading to the conservation 
of symmetry in allosteric transitions, proposed by 
Monod and his collaborators,7 represents as it were a 
mechanism within a mechanism. Actually, from a 
thermodynamic point ,of view, the mere existence of 
differences of ligand affinity between different conforma­
tions is enough to generate the complex conformational 
equilibria that result in allosteric linkage. 

9. The Heats of Liganding 

Consider first the case where there is only one ligand. 
Then 

JI = # T l n 2 > M ; (9.1) 

where Nix is a polynomial in x of degree t. Con­
sequently 

1 
2viKit 

but 

AH = -tRT*b-^=RT>dln^Kil 

dT dT 

R T ^ K , ^ + RHJiKu^ ZviKu (9.2) 

where AH is the increase in total heat accompanying 
the saturation of the macromolecule (all / sites). 

The first term in the numerator on the right yields 
^PiKu(AHi)x, where (AHt)x is the increase in total 
heat accompanying the saturation of form i with ligand 
X. 

If we introduce p,- = LJZLi, the second term may 
be dealt with by the methods employed in section 6 
and yields 

ZZPiPj(Ku - K51)(AHi3), 

where (AHij)c is the increase of total heat accompanying 
the transition from conformation i to conformation 
j in the absence of ligand (compare this with eq 6.5). 
As in the earlier case, the summation is to be extended 
over all pairs of values of i and j regardless of order. 

The total result is therefore 

AH 
ZPiKu(AHi)x ZPiPj(Kj1 - Kj1)(AHa)C ( 9 3 ) 

ZviKit ZPiKu 

Here AH gives the total heat of saturating the macro­
molecule with ligand X, i.e., the heat of saturating all 
t sites. It is to be emphasized that the e's are the mole 
fractions of the various forms in the absence of ligand 
and are constant. Equation 9.3 shows how the total 
AH involves the heats of transition between the various 
allosteric forms as well as the heats of liganding of 
the forms separately. Each of the two terms on the 
right represents an average. 

When another ligand, Y, enters into the picture, the 
situation becomes more complicated, as will be seen 
from eq 4.16, for we now have also to take account of 
the temperature derivatives of the Niy, i.e., the heats of 
combination with ligand Y of each of the conformations. 
We shall not attempt to write down the general equa­
tion. Nevertheless it may perhaps be worthwhile to 
consider in passing the simplest possible case, that where 
there are only two allosteric forms and where there is 
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only one site for each of the two ligands (see section 3). 
The equilibrium constant for X is then simply 

_ ViK1(I + Mif, + VaKt(l + M,y) 

Vl(\ + Miy) + vi(l + M2y) 

where the M's are the equilibrium constants for the Y 
binding site in each of the two forms. In the absence 
of Y, the right-hand member degenerates into a form 
which may be dealt with by the treatment just given; 
in the presence of a large amount of ligand it passes 
over into 

_ ViMiKi + ViMiKi 
ViMi + V2M2 

from which AH is obtained by differentiation with re­
spect to T. 

10. Hemoglobin as an AHosteric Protein 

Hemoglobin is generally regarded as the type case of 
an allosteric protein; indeed it was the study of mam­
malian hemoglobin that first suggested the concept of 
conformation change as a source of interaction in a 
macromolecule containing several sites for several dif­
ferent ligands.15 It is challenging therefore to see how 
far the behavior of hemoglobin conforms to the prin­
ciples just developed. 

a. The Oxygen Equilibrium of Mammalian Hemo­
globin. Under a wide variety of conditions the mam­
malian hemoglobins exist as tetramers containing two 
a chains and two /3 chains. As such they contain four 
sites, the four hemes, one in each chain, each of which 
combines with a single molecule of oxygen (or any one 
of various other ligands). There are also certain other 
sites, about whose identity and position there has been 
much speculation, which bind proton and which are 
linked with the oxygen-combining sites. This hetero­
tropic linkage, known as the Bohr effect, is positive 
below pH ~ 6 and negative above it. In addition to 
the heterotropic interactions between proton and oxy­
gen, there are also homotropic interactions between 
the oxygen combining sites, the apparent homotropic 
free energy of interaction per site as determined from 
the asymptotes of a Hill plot being in the neighbor­
hood of 3000 cal (see Figure 5). 

The most striking features of the oxygen equilibrium 
of mammalian hemoglobin are the following. (1) The 
equilibrium curves, X or x vs. In x, are very nearly 
invariant in shape for changes of pH. (2) They are 
also nearly symmetrical. (3) The interactions repre­
sented by the Bohr effect can be explained, phenomeno-
logically at least, by assuming that there are two pro­
ton-binding sites per chain, the same for each chain, 
which are oppositely affected by oxygenation but are 
independent of one another. (4) The equilibrium 
curves are, if anything, even more invariant in shape 
for changes of temperature than for changes of pH,16 

and the effect of temperature can be fairly well ac­
counted for by assigning to each oxygen-binding site 
an intrinsic heat of oxygenation which is independent 
of the degree of protonation of the molecule, and to 
each of the two oxygen-linked proton-binding sites 

(15) J. Wyman and D. W. Allen, / . Polymer Sci., 7, 499 (1951). 
(16) In the case of tuna fish hemoglobin, the curves change grossly 

with pH but are invariant for changes of temperature; see A. Rossi 
Fanelli and E. Antonini, Nature, 186, 895 (1960). 

a heat of ionization which is independent of the degree 
of oxygenation. (5) The required value of the heat 
of oxygenation is, within the errors, the same as that 
observed in myoglobin, a single-chain molecule con­
taining only one heme, which shows no appreciable 
homotropic interactions and scarcely any heterotropic 
ones. Of the required heats of ionization of the 
oxygen-linked acid groups, one lies in the range char­
acteristic of a carboxyl group and the other in that 
characteristic of an imidazole group. (6) The charac­
teristic homotropic interactions, and in particular 
the value of n ^ 3, are not greatly changed at high 
ionic strength where the tetramers are very largely 
dissociated into a/3 subunits; on the other hand, the 
Bohr effect is much reduced. 

It would seem, in view of the analysis just given, that 
items 1, 2, and 3 would rule out any interpretation of 
the behavior of hemoglobin in terms of allosteric link­
age. Moreover, the simple behavior represented by 
items 4 and 5 would appear difficult to reconcile with 
such an interpretation. Item 6 (n = 3 in a two-site 
molecule) is hard to explain on any basis. On the 
other hand, strong evidence from a variety of sources 
indicates that the combination of hemoglobin with 
ligand is accompanied by profound conformational 
changes and suggests therefore that the homotropic 
and heteotropic interactions are both basically allo­
steric. If different conformations have different ligand 
affinities and the system is in equilibrium, allosteric 
effects must come into play. 

Faced with these opposite and equally compelling 
indications, we offer the following suggestion, which 
is in fact the amplification of an idea proposed many 
years ago on the basis of much more limited evidence.l 

Let us assume that the sites within the a/3 pairs interact 
very strongly and that there are much weaker inter­
actions between pairs. This idea is consistent with the 
fact that hemoglobin H (/J4) and other systems contain­
ing only one kind of chain fail consistently to show any 
significant interactions, heterotropic or homotropic. 
If the subunits were completely stabilized, then n would 
be equal to 2 and the homotropic interaction would be 
infinite for each such pair. A further relatively small 
secondary interaction between the pairs might then 
be expected to raise n somewhat above 2, say to the ob­
served value of 2.7-3. The Hill plot would have the 
form shown in Figure 6 with an asymptote of 2 at each 
end. The ligand equilibrium curve, as in the case of a 
two-site macromolecule, would be symmetrical, and 
at the same time the value of n would be relatively in­
sensitive to the secondary effects arising from the rela­
tively weak interaction between the a/3 pairs. Thus 
whether at high ionic strength, where the oxygenated 
molecules are partly dissociated into a/3 pairs, these 
interactions between the pairs were due to an associa­
tion-dissociation equilibrium (for which there is 
some evidence) or to a simpler type of interaction be­
tween separate molecules, concentration changes would 
have relatively little effect on the over-all picture; 
indeed the transition from intramolecular to inter-
molecular interaction consequent on dissociation might 
scarcely be noticed. Since the interaction energy within 
the a/3 subunits is infinite, any allosteric transforma­
tion to which it was due would necessarily be complete 
(100%) as a result of oxygenation. Thus if the Bohr 
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Figure 6. Hypothetical Hill plot for extreme case of two com­
pletely stabilized a/3 subunits subject to secondary interaction. 

effect arose from heterotropic interactions within the 
a/3 pairs, it would be expressible in terms of a simple 
difference in the pK values of the oxygen-linked acid 
groups in the two conformations (assuming only two 
to be involved), just as it is found to be. If the free-
energy change accompanying the allosteric transition 
within the a/3 subunits, as well as the much smaller 
free-energy change representing the interaction be­
tween them, both represented entropy effects, then we 
should also have an explanation of the observed tem­
perature invariance of the equilibrium curves and the 
unexpectedly simple behavior of the heats. The hy­
pothesis that AH for the transition is essentially zero 
is in good agreement with the fact that the inherent 
heat of oxygenation of native hemoglobin is the same 
as that of myoglobin and various modified hemoglobins 
in which the heme-heme interactions and Bohr effect 
have been eliminated. 

Clearly this extreme interpretation of the behavior 
of hemoglobin is inconsistent with the facts. The slope 
of the asymptotes in the Hill plot is unity, not 2, and 
the apparent interaction energy is not infinite but only 
about 3000 cal. Let us see therefore how much of the 
picture, in its main outlines so plausible, remains 
when we reduce the interaction energy within the a/3 
subunits to a finite value, keeping it, however, much 
greater than that between these units.17 

Consider first the a/3 pairs. Assume that these exist 
in two conformations, 1 and 2, which in the absence of 
ligand occur at the mole fractions V1 and V2 and are char­
acterized by the equilibrium constants k\ and k2, the 
two sites having the same oxygen affinity in each con­
formation. We wish to explore the values of n — 
«i/2 at half-saturation and the apparent and real free 
energies of interaction within the pairs in relation to 
various values of the constants. 

The binding potential of a pair is given by 

(17) In the original suggestion the sites were supposed to be arranged 
as at the corners of a rectangle with an interaction constant of 400 for 
interactions along the short sides of the rectangle and a constant of 4 for 
interactions along the long sides, there being no interaction correspond­
ing to diagonals. This naive model gives a total interaction energy, per 
heme, of about 2200 cal as compared with the value of 2500-3000 cal of 
more exact data more recently obtained from Hill plots. Of this 2200 
cal, about 1800 come from the strongly interacting pairs and about 400 
from the weakly interacting pairs. 

JI = RTIn[V1(I + klXy + v2(l + kiXy] (10.1) 

By setting 

#1 = 2(yih + v2k2) 

and 

K2 = vtki2 + v2k2
% 

in eq 5.4, we obtain for the apparent free energy of in­
teraction, per site 

AF1 = RT In r V 1 i\2 = RT In p (10.2) 

If we introduce z = k2/ku the expression for p becomes 

1 + V2(Z' - 1) 
P = (1 + V2(Z - I ) ) 2 (10.3) 

The expression for m/2 may be obtained directly 
from the general equation given earlier,18 namely 

« V i 

](4P - /»)*,*., 
0 

t / ./CiAi/, 

(10.4) 

By setting / = 2 and identifying JCI/, with xm = l/\ZK~2 

on the grounds that the ligand equilibrium curve of 
any two site molecules is necessarily symmetrical 
(see section 8), we then obtain 

« i / , 

1 + 
K1 

2VK, 
v\kx + V^k2 1 

Vvxky + v2k2* Vp 

(10.5) 

We see that in this simple two-site case n depends 
only on the apparent free energy of interaction, AF1 = 
RTIn p. 

We know that large values OfAF1 and Hy, (approach­
ing 2) will be realized when fci and k2 are widely sepa­
rated and the form with the lower k is predominant in 
the absence of ligand; this means of course that combi­
nation with ligand involves a large conformational 
transition. Figure 7 shows values of AF1 and Hy, 
calculated as a function of v2 for several different large 
values of z from eq 10.2 and 10.5. It will be seen 
from the figure that we need consider only values of z 
greater than 100 or 200, and that a value between 
about 500 and 1000 combined with a value of —log v2 

between about 2 and 4 (i.e., 10~4 < v2 < 1O-2) will give 
an interaction energy per heme of 2500-3000 cal 
and a value of Hy2 in the range 1.7-1.9, which is about 
what we are looking for. 

In order to get an idea of the completeness of the 
transition accompanying combination with ligand when 
the constants lie in this range, let us arbitrarily set 
v2 = 10 - 3 (V1 ^ 1) and z = 500. Since the equilibrium 
constant for the transition is given by 

V1' 
= L2' 

v2(\ + ktxy 
V1(I + klXy 

it follows that saturation with ligand, which corre­
sponds to x -*• O=, must cause a change in v2 from 10~3 

to 10_3z2 = 250, in other words, a virtually complete 

(18) Seeeq4inref 1. 
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Figure 7. Values of apparent interaction energy AFi and «, - for 
the a/3 subunits as a function of log v2 for various values of z (from 
calculations in text). 

transition. Moreover, in view of the high degree of 
stabilization, i.e., the very high interaction energy within 
the pairs, the value of v2 will vary nearly linearly with 
the degree of oxygenation. 

Under these conditions the value of «1/2 is 1-8 and the 
value of the apparent interaction energy of the a/3 pair 
is 2780 cal. This apparent free energy of interaction 
represents of course a minimum value, as we have in­
sisted throughout. The true value exceeds this by an 
amount determined by the final asymptote of the hy­
pothetical Hill plot in the absence of any conformational 
change. _In accordance with eq 5.8 this excess is given 
by .RJIn k~lk, which in the present case becomes 

fn 

RTIn Iv1 + V-\(Vl + vtz) ^ /WIn[I + (10-3/500)][l + 

(10"3X 500)] = RTIn 1.5 = 240 cal (10.6) 

This almost negligibly small figure results from the fact 
that V2 remains so small (1O-3) throughout.19 

(19) It should be emphasized that the interaction free energy is a 
measure of the extent to which the introduction of ligand at any degree 
of saturation is diminished as a result of the previous introduction of 
ligand. Thus the total free energy of interaction refers to the difference 
between the free energy (per site) of introducing the last increment of 
ligand under actual conditions and the value which it would have if 
there were no intreactions. It is not to be confused with the diminution 
in the actual work of saturating the macromolecule with ligand which 
results from the interactions, as formulated in section 4, and represents 
an integral effect of the interactions. In the present case the latter 
quantity, per site, is, by eq 4.10 

RT 
2 •„[• + Vi(Z*- 1) 

2*1 VZ ]-¥-[•- + 1 0 - 3 ( 2 5 X 1 0 4 - 1 ) 
(25 X 104)Viooo 

1645 cal 

200 400 600 800 1000 1200 1400 

HF 
Figure 8. Values of «ya vs. the secondary interaction energy AFi 

between the a/3 subunits (from calculations in text). 

So far our considerations have been directed to the 
a/3 subunits, which, alone, have an interaction 
energy of 2700 cal per site and a value of Hy2 = 1.8. 
The question next arises as to how much additional 
interaction energy between these subunits would be 
required to raise Hy2 from this value to the observed 
value of 2.8-3.0. For this purpose, in order to make the 
calculations as simple as possible, we treat the a/3 sub-
units as if they were completely stabilized, with n = 
2. Then the binding potential degenerates into the 
simple form 

JI = RTIn [V1(I + Zc1
2X2)2 + V2(I + /c2

2x2)2] (10.7) 

Our assumption is equivalent to supposing that the 
tetramer exists in two conformations in each of which 
the completely stabilized a/3 dimers have a different 
oxygen affinity. This is not unreasonable if we sup­
pose that the conformation of the dimers (as deter­
mined by oxygenation) affects the equilibrium between 
the two forms of the tetramer. Differentiation of (10.7) 
with respect to RTIn x2 gives the number of oxygenated 
a/3 units per tetramer. The free energy of interaction, 
per a/3 unit, is determined by the values of V1 = 1 — 
V2 and kz/kx. However, for our present purpose 
we need not go into this. Equation 10.7 may be used 
as it stands to obtain the free energy of interaction per 
double site, i.e., per a/3 subunit, as a function of p 
treated as a parameter. Since in this case of two iden­
tical a/3 subunits, each completely stabilized, the ligand 
equilibrium curve is symmetrical, Xy2 = xm, and we 
obtain the value of Hy1 on the basis of eq 10.4 in terms 
of the same parameter p. 

Wy2 = 
l + (1/VP) 

(10.8) 

This is the same as (10.5) with the factor 2 replaced by 
4; this replacement results from the fact that in eq 
10.7 JI is expressed as a function of x2 instead of x. 
Figure 8 shows values of /Iy2 plotted against AF1 per 
site as obtained in this way. It is striking what small 
values of AF1, e.g., 600 cal per site, suffice to raise m/, 
from 2 to ~ 3 . The actual case, where the subunits 
are not completely stabilized (nv„ say, = 1.8 instead of 
2) should not be greatly different.20 This calcula­
tion rounds out the discussion given above of the 
anomalously high values of n observed under condi­
tions where the full hemoglobin molecules are largely 
dissociated into dimers. 
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Figure 9. Bohr effect and values of n for human hemoglobin in 
various buffers in absence of added salt (20°): • , in 0.2 M phos­
phate; O, in 0.4 M acetate; V, in 0.05 M borate; A, in 0.4 M 
glycine; from E. Antonini, J. Wyman, A. Rossi Fanelli, and A. 
Caputo, J. Biol. Chem., 237, 2773 (1962). 

We are now in a position to consider the pH in-
variance of the ligand equilibrium curves. The total 
observed Bohr effect for the mammalian hemoglobins, 
i.e., the change in log xi/t = log xm (identifying pOa 

with x) between pH 9 and 6.2, is slightly over 1. This 
means that xm at pH 6.2 is a little more than ten times 
what it is at pH 9. If we suppose that this is all due to 
interactions within the subunits and, as before, set 
hjki = 500, we obtain from eq 4.6 

(*m)pH6 _ 

(*m)2pH9 (1 + ^ 5 0 0 2 ) p H 6 ~ 

Provided the v's are not much less than 10~4, this gives 

(y0pH9 ^ JQQ 

("2)pH6 _ 

Reference to Figure 7 shows that a shift of —log v2 by 2 
units centered about a mean value of near 3 does not 
lead to any very significant change of either m/, or the 
value of the apparent free energy of interaction. There 
will not therefore be any very significant change in 
AF1 or ni/j for the whole molecule (i.e., the tetramer) 

(20) The extent of the error introduced by this revealing over-simpli­
fication becomes apparent when we write down the full expression for 
the binding potential of the system. This is 
JI = RT\n Jx1'[K1(I + hxy + p2(\ + k^)Y + 

1-2'[V1(I + k,z'xy + V2(I + kiz'xY]1} 

where the v"s refer to the mole fractions of the two conformations of the 
tetramer in the absence of ligand, and z' gives the factor by which ki 
and ki are increased in the tetrameric conformation of higher ligand 
affinity; this is the basis of the secondary interaction. If we set vi'/vi' 
= 1/25 and z' = 5, we then obtain for this secondary interaction a value 
of 780 cal, and «, for the median point of the equilibrium curve, rises 
from its value of 1.8 in the isolated pairs to a value of 2.7 in the tetramer, 
instead of from an ideal value of 2 to about 3, as estimated above. Since 
the value of m remains equal to 1Ji, the equilibrium curve remains sym­
metrical. We could of course juggle the figures in various ways, but it 
is clear that there is not much room if we are to reconcile a value of n 
approaching 3 with a total interaction energy of only about 3000 cal. 
The figure 3000, which is obtained from the position of the asymptotes in 
the Hill plots, is, however, subject to considerable uncertainty and the 
true value might well be somewhat higher. Indeed a recent reexamina­
tion of the Roughton data on sheep hemoglobins gave a value of AFi 
= 3300 cal; the data of Allen, et al.,lt on human hemoglobin gave a 

value of AFi = 3600 cal. 

over the whole range of the Bohr effect, and the oxygen 
equilibrium curve will be essentially pH invariant. 
Moreover, both at pH 6 and 9 the conformational 
change of the a/3 subunits accompanying oxygenation 
will be nearly 100%. On the other hand, at pH <4.7 
or >10, where we know the aj3 subunits begin to 
dissociate into monomers, there should be a sharp 
drop in n, as well as in xm, since it is known that the 
isolated chains have a very high oxygen affinity. Both 
these expectations are in fact fulfilled in a striking way 
(see Figure 9). 

Since there is a virtually 100% transition from one 
conformation to the other accompanying oxygenation, 
it now becomes intelligible why the Bohr effect can be 
explained so well by the original simple-minded in­
terpretation in terms of two independent oxygen-
linked groups per site which have different pK values in 
the oxygenated and deoxygenated states of the system. 
Moreover, since in either the oxy or deoxy forms the 
conformation is virtually fixed (v2 = 1 or 0), it also be­
comes intelligible why there are no homotropic inter­
actions between the protons in either form. 

It is a striking fact that hemoglobin H (/34) and various 
modified hemoglobins in which the interactions are 
lacking all have a much higher oxygen affinity than 
native hemoglobin. Indeed almost anything that one 
does to native hemoglobin tends to increase its oxygen 
affinity. Moreover, in most of these forms both the 
homotropic and heterotropic reactions are greatly 
reduced or lacking. Now there is evidence from the 
reaction of native hemoglobin with dye that it is the 
deoxy form which is exceptional. It seems likely 
therefore that in hemoglobin H and the various modi­
fied hemoglobins this form is suppressed, or at least 
greatly reduced, v2 approaching 1 instead of being very 
small as in native hemoglobin. If this were the case 
we should get just the kind of change in log xi/2 which 
is observed. 

Let us consider the value of In xi/2 = In xm for an 
a/3 subunit. This is given by 

—t = W(yx + ^2Z
2) 

where as usual z = k2\ki. Setting v2 = 10 -3 and z = 
500 

—t = Zc1
2O + 5002 X 10-3) 

On the other hand, setting v2 = 1 and z = 500 

~ = fcx«(500)* 

The ratio of the two values of xm
2 is 1000, and thus we 

should expect an increase in log xm of approximately 
1.5 as a result of suppressing the deoxy conformation. 
This is not far from what is actually observed.21 

(21) There may of course be other direct effects produced by the 
modifications. A special case is human hemoglobin digested by car-
boxypeptidase B. In this case the homotropic heme-heme interactions 
tions remain unchanged, but the Bohr effect is reduced to about one-
third its normal value. Since the conformational change responsible 
for the homotropic interactions remains, we might explain this by sup­
posing that elimination of the C terminal arginine residue of the a chains 
by the carboxypeptidase alters the environment of the oxygen-linked 
acid groups in a critical way, so that they are no longer affected by the 
change. 
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Figure 10. Bohr effect in human hemoglobin as affected by ionic 
strength: (1) in 2.5 X 1O-3 M phosphate; (2) at moderate ionic 
strength (from Figure 9); (3) in buffered 2 M sodium chloride; (4) 
in buffered 5 M sodium chloride; (5) given for comparison, for 
horse or human myoglobin in 0.2 M phosphate or 0.1 M Tris HCl 
(from Antonini, et al., in caption to Figure 9). 

We conclude this subsection with a consideration of 
the influence of ionic strength. The effect of ionic 
strength is primarily on the Bohr effect, the value of n 
remaining essentially constant except at very low ionic 
strength where it drops nearly to 2. Figure 10 shows 
the way in which the Bohr effect decreases progressively 
as the ionic strength is raised until at last it nearly 
disappears. In a way this is not unexpected if our 
interpretation is correct. According to assumption 
the oxygen equilibrium is dominanted by interactions 
within the afi subunits, and the Bohr effect arises 
wholly within them. We know that at pH 6, where 
log xm is a maximum, there can be no difference of 
proton bound, and therefore no charge difference, be­
tween the oxygenated and deoxygenated molecules. 
Consequently the conformational change within the 
a[3 subunits accompanying oxygenation (this is the 
important one) should be unaffected by salt concentra­
tion at this pH. However, if the differences in the 
strength of the oxygen-linked acid groups in the dif­
ferent conformations are due, as seems likely, to elec­
trostatic interactions with neighboring charged groups, 
we should expect that increasing ionic strength would 
diminish them and so reduce the Bohr effect in the 
fashion observed. 

A problem remains, however, regarding the second­
ary interactions between the aj3 subunits, which, al­
though small in terms of interaction energy, are never­
theless decisive in raising the value of n from 2 to nearly 
3. The fact that n maintains its high value in strong 
salt solutions where the oxygenated molecules are 
largely dissociated means that the intramolecular inter­
actions between the a/3 subunits in the tetramer are 
largely taken over by intermolecular interactions be­
tween these same subunits when they are dissociated. 
These interactions might either represent the more or­
dinary type of intermolecular interaction in a solution or 
a true oxygen-linked association-dissociation equi­
librium. The latter possibility, which has much to 
recommend it, has been analyzed in considerable de­
tail. 2 It would require that a very substantial fraction 
of the deoxygenated molecules be associated as tetramers 
as long as the value of n remains high. Experiments 
bearing on this are at present inconclusive, although 
there is every evidence that the dissociation of hemo­
globin in various ways is always a ligand-linked equi­
librium. 
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Figure 11. Hill plots of the oxygen equilibrium of three inverte­
brate pigments. Curve a: Erythrocruorin of Arenicola cristata 
(mol w t ~ 3 X 10«, number of sites >100) from results of D. W. 
Allen and J. Wyman, J. Cell Comp. Physiol., 39, 383 (1952). Curve 
b: Chlorocruorin as present in the blood of Spirographs (mol wt 
2.75 X 106, number of sites ~80) from results of E. Antonini, 
A. Rossi Fanelli, and A. Caputo, Arch. Biochem. Biophys., 97, 336 
(1962). Curve c: Hemocyanin of lobster (Homerus americanus) 
(mol wt —825,000, number of sites 24) from results of S. M. Pickett, 
A. F. Riggs, and J. W. Larimer, Science, 151, 1005 (1966). All 
measurements are at 20°; those on Erythrocruorin at pH 7.8 in 
0.67 M phosphate buffer; those on Chlorocruorin at pH 7.6 in 
0.1 Mphosphate buffer; those on Hemocyanin at pH 7.7 in 0.05 M 
Tris buffer 0.025 M in calcium ion. Curve a, n = 6, AF s 3000 cal; 
curve b, n ^ 5, AF = 1900 cal; curve c, n S 4, AF = 2000 cal. 

b. The Oxidation-Reduction Equilibrium of Mam­
malian Hemoglobin. In an over-all way the oxidation-
reduction behavior of hemoglobin parallels that with 
oxygen.22 Both oxygenation and oxidation are ac­
companied by conformational changes, and the confor­
mation of oxidized hemoglobin, at least in the crystal, 
appears to be the same as that of oxyhemoglobin. 
Both the equilibria show homotropic interactions be­
tween the hemes and are subject to a Bohr effect. 
However, the oxidation Bohr effect is dominated by the 
ionization of a water molecule which occupies the sixth 
coordination position of the iron atoms in ferrihemo­
globin but is lacking in hemoglobin and oxyhemo­
globin; the pK for this ionization is close to 8. In­
stead of being invariant in shape, the oxidation-re­
duction curves of hemoglobin become flatter at acid 
pH, n dropping from about 2.5 at pH 9 to nearly 1 at 
pH 6. As a related phenomenon, the directly measured 
apparent interaction free energy falls from close to 
1300 cal at pH 8.6 to nearly zero (300 cal) at pH 6. 
Finally, the oxidation-reduction curves are for the most 
part not symmetrical. On the whole the picture is 
far easier to reconcile with the allosteric interpretation 
than is the oxygen equilibrium and indeed represents 
just about what we should expect for a system subject 
to allosteric transitions. The very large change in 
AF1 and n between pH 6 and 9 is readily intelligible on 
the basis of the large effect of the dissociation of the 
water molecule in ferrihemoglobin, which is not 
balanced at all by anything in ferrohemoglobin. The 

(22) E. Antonini, J. Wyman, M. Brunori, J. F. Taylor, A. Rossi 
Fanelli, and A. Caputo, / . Biol Chem., 239, 907 (1964). 
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only somewhat puzzling thing is why the homotropic 
interactions are not somewhat larger; those observed 
would hardly account for the nearly 100% conforma­
tional transition accompanying oxidation, which is 
indicated by X-ray studies on the crystal. 

c. Invertebrate Pigments. Figure 11 contains Hill 
plots of the oxygen equilibria of several giant inverte­
brate respiratory proteins, which contain a very large 
number of sites. In all cases the value of n at half-
saturation is high, although the total apparent free 
energy of interaction is low. Thus for spirographis 
hemoglobin m/, is over 5 (as compared with about 3 
for mammalian hemoglobin), but AF1 is only about 
1800. These proteins would seem to offer a beautiful 
example of the principle brought out in section 6 about 
the way in which the regulatory sensitivity of an allo-
steric protein increases with the number of sites. Their 
behavior has a close bearing on the problem of what 
Francis Crick temptingly calls "the design of an en­
zyme." 

11. The Occurrence of Allosteric Linkage 

It will be seen from the analysis just given that the 
behavior of hemoglobin, as a test body, is indeed not 
irreconcilable with the requirements of allosteric link­
age. A great number of other cases are also now on 
record of enzymes which show the characteristic be­
havior of allosteric proteins.7 Nevertheless the ques­
tion persists as to how comprehensive is the phenome­
non of allosteric control in macromolecules generally? 
Certainly there must be other kinds of linkage which 
come into play as well. The binding, and at appro­
priate pH ionization, of a water molecule as a result of 
oxidation, which accounts for the very large oxidation 
Bohr effect in hemoglobin, is a case in point; yet even 
here the way in which this direct linkage becomes 
effective in the larger system of interactions in the 
molecule as a whole, the tetramer, would appear 

to involve allosteric transitions. Recently another 
type of mechanism involving long-range forces arising 
from the polarizability of the hemes has been 
suggested to explain specifically the interactions ex­
hibited in the oxygen equilibrium of hemoglobin;23 

however, the phenomenon at stake is so general, 
being in no way limited either to heme proteins 
or to their oxygen equilibrium, that this explana­
tion, apart from any objections which may be 
raised against it on grounds of the underlying quantum 
chemical calculations, is unconvincing. One can 
hardly refrain from looking for a common mechanism 
for a common body of phenomena, and one is led, 
almost by the principle of exclusion, to the conforma­
tional interpretation of the many similar cases of inter­
action and regulation observed in biological macro-
molecules. Certainly there can be little doubt that 
allosteric linkage is a phenomenon of widespread oc­
currence, offering a striking example of the adaptation 
of structure to function at a molecular level.24 
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(23) Professor Willard Libby, personal communication. 
(24) Nevertheless in applying the principle to enzyme systems gener­

ally, a certain modicum of caution is necessary. No functioning enzyme 
can ever, by the very nature of the case, be in true equilibrium, and at 
best the study of an enzyme system is that of a system in a steady state. 
The analysis given in this paper is, strictly speaking, limited to systems in 
true equilibrium, and one should not be too brash in extending it. In 
any given case the basic question is how far the values of the various 
velocity constants involved are such that the enzyme substrate complex 
may be treated as being in equilibrium with the free substrate and free 
enzyme. When a system is not in equilibrium but in a steady state in 
which there is a constant degradation of energy, certain unexpected and 
paradoxical effects become possible. 
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